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Theory of Turbo machines 
 

In turbo machine theory: 

1- Friction is neglected 

2- The fluid is assumed to have perfect guidance through the machine, i.e., an 

infinite number of thin vanes. 

 

Water Turbines 
1- Impulse Turbine 

All the available energy of the flow is converted by a nozzle into kinetic energy at 

atmospheric pressure before the fluid contacts the moving blades. It is suitable for 

high heads. 

 

The most common type of these turbines is Pelton Wheel which is composed of: 

1-One or more stationary inlet nozzle(s). 

2-Runner attached to it a number of buckets 

3- Casing 
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Velocity Diagram at Inlet                                               Velocity Diagram at Exit 

 

 

 

 

 

 

 

       V1= U + Vr                                                                                                             V1 = U + Vr 

 

 

V :  Liquid absolute velocity 

U: blade speed  

Vr: Liquid relative velocity 

α: Bucket angle  

 

Notes: 

1- Ignoring the friction between the liquid and the blades and since the inlet and 

exit ports are in at atmospheric pressure, hence Vr is the same at inlet and exit. 

2- The absolute velocity of liquid at exit V2 represents waste energy. 

 

In order to calculate the inlet absolute velocity (jet velocity), apply Bernoulli 

equation: 

Pa + 0 + 1/2  ρgh =Pa + 1/2 ρV1
2
 

 

gh2V1    

And taking into account the nozzle opening  loss, then: 

gh2CvV1   

Where Cv is the nozzle coefficient. 

 

Momentum balance 
Σ F =Mout-Min 

F= -ρ Q Vr Cosα- ρ Q Vr (of liquid) 

 

F=- ρ Q (V1-U)(1 + Cosα) (of liquid) 

 

F= ρ Q (V1-U) (1 + Cosα) (on blades) 

 

 

Power of Turbine (WT) 

WT= ω T 

ω=U/r 

T=F x r 

  

Hence: 
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Vr U 
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WT= ρ Q U (V1-U) (1 + Cosα)  
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Q is the total flow rate of water 

Q=A V1 

A is the area of the nozzle  

A=π/4(dj
2
) 

dj is the nozzle diameter  

 

 

Speed Factor    

gh2

U


 

 

From the output power equation above, it could be concluded at first sight that the 

maximum power is attained when the value of α equals to zero. But this is not 

attainable practically as the exiting liquid must stay free of the tailing buckets. To 

obtain the condition of the maximum power we derive the power relation with respect 

to U: 

 

dWT/dU= ρ Q  (V1-2U) (1 + Cosα)=0 

 

hence U = V1/2 or (Φ = Cv/2)  is the condition of the maximum power 

 

WTmax= ρ Q U
2
 (1 + Cosα)  

 

 

Turbine Efficiency 
 

Qh

WT
T


 

 

 

gQh

)cos1)(UV(QU 1
T







  

 

 

 

 

 

Example 
A Pelton wheel is supplied with 0.035m

3
/s of water under a head of 92 m. The wheel 

rotates at 725 rpm and the velocity coefficient of the nozzle is 0.95. The efficiency of 

the wheel is 82% and the speed factor is 0.45. Determine the following: 

1. Speed of the wheel 

2. Wheel to jet diameter ratio 

3. The developed power 

4. The bucket angle 

 

ζT=2Φ (Cv - Φ)(1 + cos α) 



 4 

Solution 

U=ω r   Or  
gh2

U
  hence, U=0.45 x (2 x 9.81 x 92)

1/2
= 19.12 m/s 

Wheel diameter D 

 ω=U/r            Or  r=U/ ω     hence, r=19.12/(2π x 725/60)= 0.252 m  

Hence D=2r = 0.504 m 

 

Jet diameter d  

Q=A1 V1 = π/4 d
2
 x V1 

V1=Cv (2gh)
1/2 

 = 0.95 (2 x 9.81 x 92)
1/2

 =40.36 m/s 

  

0.035= π/4 d
2
 x 40.36    d= 0.033 m  

Hence the ratio D/d= 0.504/0.033 =15.12 

Qh

WT
T


   

Hence WT=0.82 x 9810 x 0.035 x 92 = 25902 Watts  

 

ζT=2Φ (Cv - Φ)(1 + cos α) 

0.82 = 0.9 (0.95-0.45)(1+cos α) 

cos α=0.822  

Hence α=34.7
o 

 

 

Reaction Turbine 
 

In the reaction turbine a portion of the energy of the fluid 

is converted into kinetic energy by the fluid's passing 

through fixed vanes before entering the runner, and the 

remainder of conversion takes place through the runner. 

 

1- Francis Turbine  

 

 The function of the guide vane is to control the 

tangential component of velocity at the runner 

inlet. 

 The function of the draft tube is to convert the 

kinetic energy remaining in the liquid into flow 

energy. 

 The pressure at the runner exit is below 

atmospheric. 
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α1: guide vane angle 

β1: blade angle at inlet 

α2: Exit fluid angle 

β2: blade angle at exit 

V1: absolute velocity at inlet 

V2: absolute velocity at exit 

Vr1: relative velocity at inlet 

Vr2: relative velocity at exit 

U1: Blade or runner speed at inlet 

U2: Blade or runner speed at exit 

Vn1=V1 sin α1 : normal component of V1 

Vn2=V2 sin α2 : normal component of V2 

Vw1=V1 cos α1 : tangential component of V1 

Vw2=V2 cos α2 : tangential component of V2 

 

 

Momentum Balance 

 

T=ρQ(Vw1 x r1 - Vw2 x r2) 

 

WT=ωT 

WT=U/r ρQ(Vw1 x r1 - Vw2 x r2) 

 

 

 

 

 

Qh

WT
T


   

Q= A Vn = 2π x r1 x b1 x Vn1 =  2π x r2 x b2 x Vn2 

 

Guide Vane Angle Relation  

Referring to the inlet velocity diagram: 

Vw1=U1+ Vn1/tanβ1 

tanα1=Vn1/Vw1 

 

and from flow rate relation   Vn1=Q/(2π r1 b1) 

 

Hence,  

cot α1 Q/(2π r1 b1) =ω r1 + cot β1 Q/(2π r1 b1)  

 

WT= ρQ(Vw1U1 - Vw2U2) 
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1
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1 cot
Q

br2
cot 


   









 

1
111

1 cot
Q

br2
cot 


  

This relation discover the importance of controlling the angular speed by 

varying the guide vane angle to components any changes in the flow rate. 

 

 

Notes: 

1- Radial Discharge:  α2= 90
o
 → Vw2=0  WT= ρQVw1U1 

2- Radial inlet blades: β1=90
o
 → Vw1=U1 

 

Example: A Francis turbine has radii of r1=0.2 m and r2=0.1 m, operates 

under the following conditions: Q=0.06 m
3
/s, rotational speed = 240 rpm, 

guide vane angle=30
o 

α2=80
o
, absolute velocity at inlet and outlet, 

respectively, 6 m/s and 3 m/s.  Take the turbine efficiency as 90%. Find 

(1) the developed power (2) the applied head (3) inlet blade angle and (3) 

the thickness of the inlet impeller. 

 

Solution: 

Vw1=V1 cos α1= 6 cos 30 =5.2 m/s 

Vw2=V2cos α2= 3 cos 80 =0.521 m/s 

U1=ωr1 = 2π x 240/60 *0.2=5.03m/s 

U2=ωr2 = 2π x 240/60 *0.1=2.51 m/s 

 

WT=1000 x 0.06(5.2 x 5.03 – 0.521 x 2.51)=1490.9 Watts  

Qh

WT
T


   

h=1490.9/(0.9 x 9810 x 0.06) =2.814 m 

tan β1=Vn1/(Vw1-U1) 

tan α1=Vn1/Vw1 

Vn1=tan 30 x 5.2= 3 m/s 

β1=tan
-1

(3/(5.2-5.03))= 86.7  

Q=2π r1 b1 Vn1 

Hence, 

 b1= 0.06(2π x 0.2 x 3)=0.016 m  
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Dt 

Dh 

t 

ri 

Vi 

2-Kaplan Turbine 
 

The Kaplan turbine, named after Victor Kaplan, a German professor, is 

an efficient axial-flow hydraulic turbine with adjustable blades. It is the 

most efficient type at very low heads.  
 

-To satisfy large power demands, very large volume flow rates necessary in the Kaplan turbine i.e. the 

product Qh is large. 

 

-The flow enters from a volute into the inlet guide vanes which impart a degree of swirl to the flow. 

 

-The overall flow configuration is from radial to axial 

 

-The number of blades is small, usually 4,5 or 6  

 

-The blades are designed with a twist suitable for free-vortex flow at entry and axial flow at outlet. 

 

-The Kaplan turbine incorporates one essential feature not found in other turbines that is setting of the 

blades angle can be controlled. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dh: hub diameter 

Dt: tip diameter 

ri:   

 

 

 

 

Vn2=Vn1=Vn 
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U 

Vr1 V1 

Vr2 

Vw1 

Va2 

Va1 
β1 

β2 



 9 

Q=2π ri x t x Vi = π/4 x (Dt
2
-Dh

2
) Va 

    

 

 

 

 

Turbine efficiency 

gh

UVw

gQh

QUVw

Qh

W 11T
T 






  

 

Free Vortex Principle 

 

 

 

 

Example: A Kaplan turbine develops 9 MW and rotates at 145 rpm under 

a head of 20 m. The tip and hub diameters are 4m and 1.75 m 

respectively. Calculate the inlet and outlet blade angle measured at mean 

radius if turbine efficiency is 90%.  

 

Dm=(4+1.75)/2 =2.875 m 

U=ωrm=(2πN/60) x 2.875/2=21.83 m/s 

tan
-1

(90-β)=Va/(U-Vw1) 

gh

UVw1
T   

Vw1= 0.9 x 9.81 x 20/21.83 = 8.088 m/s 

Q=π/4 x (Dt
2
-Dh

2
) Va 

 

WT= ρQUVw1 

Q=9x103/1000x8.088 x 21.83=50.97 

50.97= π/4 x (4
2
-1.75

2
) Va 

Va=5.02 m/s 

90-β1=5.02/(21.83-8.088)=20
o
 

β1=70
o
 

β2=tan
-1

 U/Va=21.33/5.02=77
o 

 

 

 

 

 

 

WT= ρQUVw1 

Vw x r = constant 
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Homologous Machines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assumptions 

 

1- The machines are geometrically similar (βi1= βi2) 

2- Similar stream lines i.e. the Reynolds number is the same in the 

similar machines 

This results in a similar velocity triangle in the inlet. 

 

V1/U1=V2/U2 

Or V/U=const. 

U=ωr 

ωαN 

rαD 

UαND 

VαUαND 

Q=AVn, 

AαD
2
 

VnαV 

QαND
3
 

 

 

 

 

 

 

 

Q=CdA (2gh)
1/2

 

QαD
2
H

1/2
 

ND
3
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2
H
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)1........(.const
ND

Q
3
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ND α H
1/2

 

 

 

 

 

 

Wt=γQh 

 

Wt αND
3
N

2
D

2
 

 

 

 

 

 

 

 

 

Relations 1 to 3 are called the turbo-machinery Similarity rules, are used 

to: 

1-Design or select a turbo machine from a family of geometrically similar 

units 

2- Examine the effects of changing speed, fluid or size on a given unit. 

3- To design a pump to deliver flow on the moon or on a space station! 

 

 

Specific speed 

1) Specific Speed for Turbines 

 

)1........(.const
ND

Q
3
   

[ )2.......(.const
DN

H

2

2
 ]

3/2
    H

3/2
/N

3
 D

3
=cons. 

 

H
3/2

/N
2
Q=const. 

H
3/2

H/N
2
WT=const. 

[H
5/2

/N
2
 WT =const.]

1/2
 

 

 

 

 

 

2) Specific Speed for Pumps 

)2.......(.const
DN

H

2

2
  

)3.......(.const
DN

W
53

T   

Ns.cons
N


5/4

T

H

W
 

Where: 

N: in rpm 

WT: in kW 

H: in m 
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[ )2.......(.const
DN

H

2

2
 ]

3/2
    H

3/2
/N

3
 D

3
=cons. 

[H
3/2

/N
2
Q=const]

1/2
 →  H

3/4
/NQ

1/2
=const 

 

 

 

  

 

 

 

 

 

Example: 

Two similar pumps A and B, the angular speed of pump A is 1000 rpm 

and the head developed is 12.2 m of water with a flow rate of 0.0151 

m
3
/s. Pump B is has a diameter twice that of Pump A. Find the angular 

speed and the head developed by pump B when its flow rate is 0.0453 

m
3
/s. What is the specific speed of this type of pump? 

  

Q1/N1D
3

1= Q2/N2D
3

2  0.0151/1000 x D
3

1=0.0453/N2(2D1)
3
 

N2=375 rpm 

 

H1/(N
2

1D
2

1)= H2/(N
2

2D2
2
)  12.2/(1000)

2
D1

2
=H

2
/(375)

2
(2D1)

2
 

H2=6.86 m 

 

3/4
H

QN
Ns    →  3/4

1

0.0151

2.2

1000
Ns   = 18.82 

 

Ns.cons
N


3/4

H

Q
 

Where: 

N: in rpm 

Q: in m3/s 

H: in m 


